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signal processing, digital filter,
magnitude estimator, high speed overcurrent relay

Mirostaw LUKOWICZ*, Krzysztof SOLAK*,
Pawel WICHER*, Bernard WIECHA *

OPTIMIZATION OF CURRENT MAGNITUDE ESTIMATORS
BASED ON MARQUARDT-LEVENBERG ALGORITHM

Digital filtering, correlation methods, time delay methods, signal differentiation are the most
commonly used methods of estimating fundamental frequency orthogonal components utilized in
magnitude estimators. The foundation for designing filters used in aforementioned methods are usu-
ally demanded frequency responses or signal models with their parameters to be estimated. A weak
point of both approaches is frequency-domain modelling ignoring time-domain performance of the
magnitude estimators. In order to fulfil the requirements of protection with the optimum speed for
many different configurations, operating conditions and construction features of power systems, it is
necessary to develop magnitude estimator design methods aimed at modelling with respect to high-
speed response with simultaneous acceptable estimation accuracy in the steady state.

The article discusses the implementation of Levenberg—Marquardt algorithm to optimization of
current magnitude estimators designed for power system protection with the focus on estimators used
in instantaneous overcurrent relays. The paper presents details of optimizing algorithm, power system
model used for acquisition of signal patterns and estimator performance analyzes.

1. INTRODUCTION

Current is the earliest protection quantity used in power system relaying. Modern
numeric relays, equipped with digital filtering algorithms eliminating undesirable
harmonics from protection signals, provide an accurate magnitude measurement of
current and voltage fundamental components. However, the accuracy is sacrificed by
the long duration of estimation transients after the disturbance inception.

The speed of current magnitude estimation is essential when concerned with in-
stantaneous overcurrent relays referred to as High Speed (HS) overcurrent relays.

* Wroctaw University of Science and Technology, Department of Electrical Power Engineering,
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, Poland, e-mail: miroslaw.lukowicz@pwr.edu.pl,
krzysztof.solak@pwr.edu.pl, pawel.wicher@pwr.edu.pl, bernard.wiecha@pwr.edu.pl
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These protections are used in medium voltage networks as main protections for clear-
ing high level current faults and in some single-end fed 110 kV power lines.

HS protection calls first of all for short time magnitude estimation transients while
ensuring adequate accuracy for the assumed signal model with its disturbances such as
e.g. decaying DC component and harmonics occurring in the pre- and fault states.

The article presents the method of designing orthogonal filters optimized with
respect to predefined magnitude estimator algorithm they are to be used in. The op-
timization process is determined by the adopted objective function, the training sig-
nal model resulting from faults modelled in the single-end fed 110 kV power line,
and the model of harmonic distortions occurring in these networks in Polish power
system.

Digital filter design is a multistep process in which one can specify the steps es-
sential for the project and the final properties of obtained filters. The primary step is to
determine the desired properties of the filter, which usually translates to determine the
desirable complex frequency response. One should then make choose of filter class
and determine the criterion according to which the choice of filter coefficients will be
made. The last step is the choice of the best solution method for formulated task and
its solution.

The desired magnitude or phase diagrams, or both these two diagrams, are the
foundation of the project in most methods of FIR filter design. Sometimes, instead of
the phase diagram the desired diagram of the filter group delay is proposed.

Usually, the basis for FIR filter design is a polynomial approximation. Filter design
methods can be classified with respect to the complexity as computer aided filter de-
sign methods and traditional methods. The term traditional methods should be under-
stood as methods in which the filter design is carried out without the use of iterative
techniques, i.e. window methods based on inverse discrete Fourier transform [1]. The
traditional methods are not computationally very complex, and their applications are
limited to quite specific cases with respect to approximated characteristics. When us-
ing the traditional design, additional requirements relating to the properties of the filter
in time or frequency domain cannot be taken into account. Therefore, this article pres-
ents the optimal estimator design method dedicated for measuring of the fundamental
frequency voltage or current component magnitude.

2. MAGNITUDE ESTIMATORS

2.1. FUNDAMENTALS

One group of magnitude estimation methods is based on orthogonal fundamental
frequency components of the analyzed periodic signals. According to the Pythagoras’s
theorem magnitude of sine wave can be calculated from the following formula
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1(n)=iZ(n)+i; (n) (1)
where i., i; are orthogonal components evaluated for instant ». One can obtain or-

thogonal components, for instance of current i, by digital filtering with coefficients
be(jy» by of the pair filters according to the following formulae

i.(n)

N-1

Z i(n - j)bc(j)

Jj=0

i\(n)=Y iln—j)by,

J=0

)

These filters should provide a phase shift of n/2 and the same modules of output
signals for the fundamental frequency. Moreover, the proper shape of the frequency
response above and below the nominal power system frequency should be ensured.
Usually impact of harmonics and decaying DC offset on orthogonal components esti-
mation should be minimized. This very well define requirements of filtering protection
signals as far as magnitude estimation accuracy in the steady state is concerned, how-
ever no specification are given explicitly regarding the interaction between magnitude
and phase responses and the estimation transient state desired. The most commonly
used filters that meet the basic requirements listed above are orthogonal sine-cosine
filters referred to as full cycle Fourier filter. These filters introduce the estimation
transient state of the length that is equal to the length of filter data window. Moreover,
the impact of decaying DC current components on magnitude estimation based on
these filters is significant.

2.2. ESTIMATOR DESIGN BASED ON TARGET PATTERN PRESENTATION

In the proposed method, two filters orthogonal only near the system frequency,
are design by minimizing of the objective function that is expressed by the following
formula

L K
0(B..B,)= ZZ%W(M, e(B. k. )12(B. k. n)- (k. n)] . 3)
k=1 n=1
where
B = [Bc Bs]: [bc(O) bc(l) "'bc(N—l) bs(O) bs(l) "'bs(N—l)]: [b(o) b(2N—1)] 4)

is a parameter vector of the estimator.



8 M. LukowiCzZ et al.

For a given set of training cases, function Q takes value of the cumulative weighted
squares of estimation errors. The error is defined as difference between the magnitude
estimate squared and target estimate squared. An estimate error for n-th sample in k-th
fault case is expressed as follows

e(B, k, n)=1*(B, k,n)—1(k, n) (5)

The square of (1) is used in (5) to avoid the computation of the partial derivative of the
square root function.

The value of the objective function for a fixed set of training examples depends
only on filter coefficients employed in the estimator (1-2). Sets B, and B; of 20 coeffi-
cients each constitute set B of parameters to be optimized.

The weighting function W in (3) defines the estimate transient state length (M) and
steady state for n > (M + N ) This function eliminates from training process these data

windows that are associated with sampling instants before the fault inception desig-
nated with V.

1 for n>(M+N)
W(M,e(B,k,n)=41 for N+1<n<M+N AND e(B,k,n)>0  (6)
0 for n<N+1

Values taken by weighting function are shown in Fig. 1. The length of the transient
state denoted by M is a parameter of the proposed estimator. The corresponding esti-
mate is arbitrary for this state, but should not be greater than the magnitude at the
steady state. This results in that only those moments of the transient state are used in
the optimization, for which the error exceeds 1, i.e. when the overshoot of the magni-
tude estimate occurs.

In the proposed approach, current samples for all fault cases are normalized to pro-
vide the steady state magnitude equal to 1 as depicted in Fig. 1.

One group of iterative optimization techniques are methods based on the gradient
of the objective function calculated with respect to the optimized quantities. In the
proposed approach the gradient of (3) relative to the coefficients of B. consists of
components computed with the following formula

L K .
>N W (M, e(B, k, n)e(B, &, n)i.(B.. k, ) 0Bk )
k=

ob,

—

1 n=

c(l)

ZL:iW (M, e(B, k, n)k(B, k, n)i.(B,, k, n)i(k, n—1+1) (7)

k=1 n=1
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and components obtained with respect to coefficients in B, with formula as follows:

P _ iiW(M, e(B, k, n)(B, k, n)i. (B, k, n)iCk, n—1+1) ®)

8bs(l) k=1 n=1

Iinput

L5 ; g ; ! ! : :
W(M,(%(B,k,né)‘)zlvé\  B(MeBkn)-=1

1[p-u.]

205 , ................... .................. ................. ................. ................ .
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t[s]

Fig. 1. Values taken by weighting function in pre fault, transient, and fault state

Since Levenberg—Marquardt method is adopted in this approach the approximation
of Hessian of the following form

%0 . _20
OboOboy  ObwObay-y
HQ)=| g . ©)

Q . Y
ab(zjv-l)ab(o) 8b(zzv-l)ab(zzv-l)

has to be determined. The components of Hessian are expressed by the following for-
mula:

2 L K
00 _ > > w(M. e(B. k.n))(B,. k. n)i,(B,. k. n)i(k, n—1 +1D)i(k,n—m+1) (10)
ob abc(l) k=1 n=1

s(m)
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Updating of the coefficients in row matrix B for p-th optimizing epoch is pro-
ceeded according to the rule proposed by Levenberg and Marquardt

grad QO

B(P“):B(P)—m (11)

where I is the unit matrix and A time-varying factor weighing between the Newton—
Rapson method and the steepest descent method [2].

2.3. POWER SYSTEM MODEL

Training data set consists of examples of current waveforms and the corresponding
target magnitudes taken from the steady state. Aforementioned waveforms were re-
corded for faults in 110 kV line modelled in EMTP (Fig. 2) under analog filtering with
330 Hz cutoff frequency and sampling frequency of 1 kHz. Additionally, training cur-
rent waveforms were artificially distorted with harmonics of maximum magnitudes as
given in Table 1.

d1+d2:100km

U,=110kV
0.24-24 GVA dh dh

load
Rp=0-30Q 0—480 MW

RELAY
£,=330 Hz =
f,=1kHz

Fig. 2. Modelled 110 kV system

Table 1. Accepted levels of harmonic distortions
for nominal power system conditions

hy IA]
2 40
3 70
4 25
5 30
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3. RESEARCH OUTCOMES

The estimator (1-2) underwent optimization for different lengths of the tran-
sient states with parameter M varied from 0 to 20. The maximum relative errors of
measurements with respect to maximum error of algorithm (1) based on the full
cycle Fourier filter were evaluated for all received optimal estimators. The errors
were compared on the basis of the same set of fault cases, yet unused for the opti-
mization.

Figure 3 illustrates the unit impulse response of two filters obtained for the
adopted 7 samples length of the transient state. As one can see, the windows of these
filters are neither symmetric nor anti-symmetric, so that the phase characteristics of
these filters are non-linear. However, the fundamental component magnitude esti-
mation according to (1) does not require linearity of phase displacement in wide
range of frequency yet only calls for both filters to have the same value of magni-
tude and constant relative phase shift equal to n/2 for close proximity of 50 Hz
(47 Hz-52 Hz). Furthermore, both characteristics (phase and magnitude) for higher
frequencies should be shaped to provide a compromise between the expected re-
sponse rate estimator (1) and its accuracy (eliminating the impact of harmonics) for
samples of steady state i.e. for n exceeding M + N. The frequency responses of both
optimized filters for M = 7 are shown in Fig. 4.

—a— b, An)

— b, An)

0.5 | ................... ................... .................. .................. ................... .................. ................. 4

b c(s)(n )

% A S AR NN NN NN N N N
~0 2 4 6 8 10 12 14 16 18 20

coefficient index - n

Fig. 3. Unit imulse response of filters optimized for M =7
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H(€")

frequency [*S0Hz]

Fig. 4. Frequency response of filters optimized for M =7

Figure 5 presents example estimate of current magnitude for the ground fault in
110 kV line. In addition, estimates realized with the conventional algorithm (1)
based on full cycle Fourier filter and based on original and differentiated signal are
depicted. As one can see, the response of the optimized estimator shows its immu-
nity to the decaying DC component as well as its rapid reach of the steady state
magnitude. The shortening of the estimation transient state duration when com-
pared to response of the conventional algorithm can be assessed to about 12 sam-
ples, i.e. 12 ms.

The performance analysis of the three aforementioned measuring algorithms car-
ried out based on the testing signal set allowed for determination of their upper and
lower response bounds. Envelopes of response families for unified currents of ana-
lyzed estimators are depicted in Fig. 6. It also gives definition of the maximum rela-
tive errors used to prepare Fig. 7.

Analyze results for all investigated estimators for M varied from 0 to 20 sam-
ples are presented in Fig. 7. The diagram shows that estimators designed for the
adopted signal model resulting from fault conditions modelled in 110 kV are char-
acterized by a smaller maximum error starting from M > 7 when compared with
conventional measuring algorithm. Figure 7 also shows that expanding the length
of the transition state above M = 9 only slightly reduces the maximum relative
errors. The error, as compared with the conventional algorithm, can be for M = 20
reduced to about 0.45.
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‘e Ider_2
- opt_7
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Fig. 5. Current magnitude estimations based on formula (1)
with the use of full cycle Fourier filter,
orthogonalization by signal differentiation, and optimized filters obtained for M =7

sin-cos_20
I der_2

t[s]

Fig. 6. Transient response limits of the magnitude estimator
based on the full cycle Fourier algorithm,
signal differentiation based algorithm, and the algorithm optimized for M= 7

13
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Similar studies were carried out for algorithm optimized for maximum length of
the response transient state of 20 samples. The corresponding impulse and frequency
responses of the filters are shown in Figs. 8 and 9, respectively. As one can see from
comparison of Figs. 5 and 9, resignation from forcing the rapid response allows for
better filtering of high frequency components in particular 2nd and 3rd harmonic. The

max {Lop }/Max{ Lin-cos §
o NS

—

Fig. 7. Maximal relative estimation errors with respect to the error of full cycle Fourier algorithm
versus the length of the transient state of A samples

0.25 ! T T :
—o— b_x(n)
U 1 R F T b )

0.15

0.1

s :
0 2 4 6 8 10 12 14 16 18 20
coefficient index - n

Fig. 8. Unit impulse response of filters optimized for M = 20
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effect is clearly visible as small errors in the steady state, i.e. narrower envelope in
Fig. 10 vs. Fig. 6. However, the ability to eliminate the effect of the decaying DC cur-

rent component in both temporary and steady state has decisive influence on the qual-
ity indicator presented in Fig. 7.

1.4 ! ! ! !

== o
12F : : : f : f
1.0

0.8 | \ ,4\
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frequency [*50Hz]

Fig. 9. Frequency response of filters optimized for M = 20

- z
— _[sm-cos_ZO
' Lo 20
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Fig. 10. Transient response limits of the magnitude estimator
based on the full cycle Fourier algorithm and the algorithm optimized for M = 20



16 M. LukowiCzZ et al.

3.2. FREQUENCY DEVIATION IMPACT ON MAGNITUDE ESTIMATION

Since the system frequency undergo continuous fluctuations and is not constant in
long time intervals, all estimators of electrical quantities such as magnitude, imped-
ance etc. should be insensitive to frequency deviation in the vicinity of the nominal
system frequency. Occurring system frequency variations should not exceed the limits
of 49.5 Hz to 50.2 Hz for normal conditions of the power system, however variations
in the range 47.0 Hz to 52.0 Hz are accepted.

Figure 11 shows errors of magnitude measurement of purely sinusoidal signal as the
function of frequency. As can be seen the error of estimation is zero for full cycle Fourier
algorithm, yet only for 50 Hz. The accuracy of this algorithm decreases the deviation
pulse, but is still higher when compared with estimates based on the filters designed by
means of proposed technique. The accuracy of the conventional method is greater in the
frequency range from about 49 Hz to 50.4 Hz. Outside this interval the measuring algo-
rithm based on filters optimized for M = 7 is more accurate. One may also notice a rela-
tively higher resistance of the algorithm based on filters optimized for 20 sample transient
state. In this case, estimation errors are less than 1% for the frequency deviation of £3 Hz.

[sm_cos_2<

1 opt_7

- ]om 20

50 51 52 53
fHz]

Fig. 11. Magnitude estimation errors vs. deviation of the system frequency

4. CONCLUSION

The paper presents optimization method of magnitude estimators intended for in-
stantaneous overcurrent protections. Assumptions regarding the project were primarily
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to ensure the prompt estimator response after a fault inception and simultaneous re-
duction of transient state errors resulting mainly from the decaying DC current com-
ponent.

By appropriate choice of the signal model, the proposed approach allows for arbi-
trary forming of magnitude characteristics of the filters. This selection is carried out
by selection of the power system model determining transient states of electrical phe-
nomena, the appropriate choice of the fault phenomena model, i.e. arc model, interfer-
ences occurring in the normal operation of the power system as well as the impact of
instrument transformers on protection quantity wave shapes.
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